The generating rank of the symplectic line-grassmannian

نویسنده

  • Rieuwert J. Blok
چکیده

We prove that the grassmannian of lines of the polar space associated to Sp2n(F) has generating rank 2n − n− 1 when Char(F) 6= 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The generating rank of the symplectic grassmannians: Hyperbolic and isotropic geometry

Exploiting the interplay between hyperbolic and isotropic geometry, we prove that the grassmannian of totally isotropic k-spaces of the polar space associated to the symplectic group Sp2n(F) has generating rank ( 2n k ) − ( 2n k−2 ) when Char(F) = 2. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

Minimum distance of Symplectic Grassmann codes

In this paper we introduce Symplectic Grassmann codes, in analogy to ordinary Grassmann codes and Orthogonal Grassmann codes, as projective codes defined by symplectic Grassmannians. Lagrangian–Grassmannian codes are a special class of Symplectic Grassmann codes. We describe all the parameters of line Symplectic Grassmann codes and we provide the full weight enumerator for the Lagrangian–Grassm...

متن کامل

Complete systems of invariants for rank 1 curves in Lagrange Grassmannians

Curves in Lagrange Grassmannians naturally appear when one studies intrinsically ”the Jacobi equations for extremals”, associated with control systems and geometric structures. In this way one reduces the problem of construction of the curvature-type invariants for these objects to the much more concrete problem of finding of invariants of curves in Lagrange Grassmannians w.r.t. the action of t...

متن کامل

Point-line characterizations of Lie geometries

There are two basic theorems. Let G be a strong parapolar space with these three properties: (1) For each point x and symplecton S, x is collinear to some point of S. (2) The set of points at distance at most two from a point forms a geometric hyperplane. (3) If every symplecton has rank at least three, every maximal singular subspace has finite projective rank. Then G is either D6; 6;A5; 3 or ...

متن کامل

Curves and Symmetric Spaces, II

We describe the canonical model of an algebraic curve of genus 9 over a perfect field when the Clifford index is maximal (=3) by means of linear systems of higher rank. Let SpG(n, 2n) be the symplectic Grassmannian, that is, the Grassmannian of Lagrangian subspaces of a 2n-dimensional symplectic vector space, over a field k. In the case n = 3, SpG(3, 6) is a 6-dimensional homogeneous variety an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003